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On estimation of entrance boundary parameters from
downstream measurements using adjoint approach
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SUMMARY

An estimation of entrance boundary conditions from the downstream measurements is considered in
variational statement form for two-dimensional supersonic laminar flow. The adjoint problem is used for
the calculation of the discrepancy gradient in space of control parameters. The numerical tests presented
demonstrate the successful estimation of boundary parameters of spatial distribution by using gradient
methods. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present state of experimental art provides abundant data on spatial distributions of
velocity components, temperature density, and concentrations in the flow field [1–3]. These
methods provide high spatial resolution and high accuracy. Nevertheless the direct measure-
ment of flow parameters in regions of interest may be difficult, for example, due to lack of
access. The measurements may be located in some other zones. On the other hand, the
estimation of the total flow field from measurements in some section may be of interest.
Both these problems may be reduced to the estimation of entrance boundary parameters
from measurements in a downstream flow field section (or set of sections). This problem
may be posed in variational statement form, where the discrepancy between measured and
calculated flow parameters is minimized. Gradient methods (steepest descent, conjugate
gradient, quasi-Newton) are often used for the minimization, the discrepancy (residual)
gradient calculation being the most time-consuming element of these methods. When the
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number of control parameters is small, the calculation of the gradient by direct numerical
differences may be used. Under this approach, the number of forward problem solutions (main
code runs) is proportional to the number of control parameters. At the large number of control
parameters, the adjoint approach is more efficient [4–13]. It requires the solution of only one
forward and one adjoint problem (with the computation time close to the forward one) for
gradient calculation. Adjoint problems are used for a large set of optimum design, flow
control, and parameter estimation problems. The minimum drag body design was studied in
Reference [7] using the two-dimensional incompressible laminar Navier–Stokes and in Refer-
ence [8] using the Reynolds-averaged compressible Navier–Stokes. The flow control problems
are considered in References [9–11] using different statements. The parameter estimation
problems (initial or boundary conditions, coefficients) are considered for data assimilation in
atmosphere and ocean dynamics for incompressible flows [12]. The determination of entrance
temperature from the outflow boundary temperature measurements is considered for super-
sonic flow in Reference [13].

The estimation of unknown entrance parameters (temperature, density, and velocity compo-
nents) from measurements within a flow field using adjoint problem and gradient optimization
is the main topic of present study.

2. STATEMENT OF PROBLEM

The estimation of unknown parameters ( f�(Y)= (�(Y), U(Y), V(Y), T(Y))) on the entrance
boundary (Figure 1) from measurements in a flow field section f exp(Xm, Ym) is considered in
the variational statement. The discrepancy of measured and calculated flow parameters is
minimized. The algorithm under consideration consists of the flow field calculation (forward
problem), the discrepancy gradient computation using forward and adjoint problems and the
gradient optimization method.

Figure 1. Flow sketch. Entrance boundary E section of measurements.
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3. FORWARD PROBLEM

The two-dimensional parabolized Navier–Stokes equations are used herein in the form similar
to that in Reference [14]. The flow (Figure 1) is laminar and supersonic along the X
co-ordinate
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The entrance boundary conditions (A (X=0); Figure 1) are as follows:

e(0, Y)=e�(Y), �(0, Y)=��(Y), U(0, Y)=U�(Y), V(0, Y)=V�(Y) (5)

The outflow condition

�f
�Y

=0

is used on B, D (Y=0, Y=1).
These equations form the ‘forward’ problem, enabling the flow field calculation from the

known inflow boundary data.

4. ADJOINT PROBLEM

The flow parameters at some set (sections in present paper) of the flow field points
f exp(Xm, Ym) are available. The values f�(Y)= (�(Y), U(Y), V(Y), e(Y)) on the boundary A
are unknown and must be determined. For this purpose we minimize the discrepancy between
computed and measured values f exp(X, Y) on the set of measurement points

�( f�(Y))=
� Xmax

0

� 1

0

( f exp(X, Y)− f(X, Y))2�(X−Xm)�(Y−Xm) dX dY (6)
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The gradient methods are used herein for the discrepancy minimization. The solution of the
adjoint problem is the fastest way for the discrepancy gradient calculation when the number of
control parameters is relatively large [5,6,8,9,11,13]. The continuous approach (engendering
system of partial differential equations (PDE)) to the adjoint problem statement is used herein.
According to References [4–6], we define the Lagrangian L( f�, f, �) using the weak form of
the problem (1)– (4) and discrepancy (6)
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Herein the adjoint parameters (Lagrange multipliers) (��(X, Y), �U(X, Y), �V(X, Y),
�e(X, Y))�H1,2(�); (H1,2(�)) is the Hilbert space of functions having derivatives of first- (X)
and second-order (Y).

The objective of transformations is to find functions ��, �U, �V, �e, such that ��=�L=
�Y grad(�)�f�(Y) dY, while all other first-order terms equal zero (it may be shown that
�L/�f�=d�/df� [11]).

We state the tangent problem in order to determine the dependence of the Lagrangian
variation on the change of control parameters. We change the entrance boundary condition (5)
by an increment

�f(0, Y)=�f�(Y) (8)

and determine the corresponding increments of ��, �U, �V, �e in Equations (1)– (4) by
subtracting undisturbed values. After that, we consider the Lagrangian (7) variation with an
account of the incremental equations for ��, �U, �V, �e by subtracting undisturbed values
and accounting only first-order members. After rearranging terms with ��, �U, �V, �e, we
integrate the result by parts and use boundary conditions for increments. As a result, the
following adjoint problem is stated:
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The boundary conditions on C (X=Ymax) are

�f �X=Xmax=0

The following condition is used on B, D (Y=0, Y=1):

��f

�Y
=0 (13)

If Equations (9)– (13) are satisfied, then

��( f�(Y))=�L( f�(Y))=
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This expression (it may be considered as the optimality condition when it equals zero)
permits us to calculate the discrepancy gradient in the space of control variables (entrance flow
parameters).
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It should be noted that the structure of the adjoint problem (9)– (13) and gradient (14)
provide a mutual compensation of different control variables. For example, the mismatch in
temperature readings engenders non-zero gradients for the inflow velocity component U�(Y).
This feature may cause an increase in instability.

The gradient may be obtained from Equation (14) for an almost arbitrary set of input data,
which may cause additional problems (stability and uniqueness) if this dataset is not sufficient
(small number of points). Hence additional analysis is necessary if the data are located on the
irregular set of points. This analysis may be performed using a Hessian spectrum obtained
from solution of the second-order adjoint problem [17]. In the present paper we consider only
datasets located on the flow sections.

5. GRADIENT CALCULATION

Equation (14) provides the discrepancy gradient estimation from the combination of the flow
parameters and adjoint variables
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The flow field (forward problem (1)– (4)) is computed by a finite difference method [15]
marching along the X. The method is of first order accuracy X and second order on Y (central
differences). The pressure gradient for supersonic flow is computed from energy and density.
The same algorithm (and the same grid) is used for the adjoint problem solution, but the
march is performed in the reverse direction (beginning at the X=Xmax).

The grid contains 50 nodes along Y and 30–100 along X. The time of the forward problem
computation is about 1 min using the Pentium 133-based computer. The flow parameters on
the entrance boundary f�(Yi)= fi (i=1, . . . , N) are used as the set of control variables. The
input data f exp(Xm, Yi) (i=1, . . . , N) are obtained at certain sections, Xm=constant (E in
Figure 1) (two sections are used in several calculations) from the preliminary computation.
(This dataset is used for simplicity and may be easily changed.) The data error is modeled by
normally distributed random values �f with dispersion � : f exp+�f. The flow parameters are
M=4, Re=1000.

The discrepancy gradient is computed using both the adjoint problem and direct differenti-
ation. The comparison of the gradients calculated by direct differentiation and from the
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adjoint problem is presented in Figure 2 for one of flow parameters (temperature). The
behavior of the gradient components for other parameters is similar. The oscillations occur
near boundaries at direct differentiation (for a jet with uniform flow [13] these oscillations are
significantly smaller if disturbances do not intersect the boundaries B, D).

6. OPTIMIZATION ALGORITHM

The spatial distribution of parameters on the entrance boundary (A) is determined by gradient
methods (the steepest descent or conjugate gradient, the latter being much faster but slightly
less robust in presence of data error)

f i
n+1= f i

n−�nSi, (i=1 , , , , N) (16)

Sn=��n for the steepest descent

Sn=��n+�nSn−1, �n=
����n��2

����n−1��2 , �0=0 for conjugate gradient

Some tests were performed using the quasi-Newton method [16], which provided the best
convergence rate.

Figure 2. Gradients ��/�T�(Yi) obtained by direct differentiating and from the adjoint problem for
T�(Yi) (i is the node number): 1, direct differentiating; 2, adjoint problem.
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7. NUMERICAL TESTS FOR INFLOW DATA ESTIMATION

The computations have the following structure: the forward problem (1)– (5) is solved for
parameter f(Y�) and the flow field �(X, Y), U(X, Y), V(X, Y), T(X, Y)) is stored. The
discrepancy �n( f ) is calculated and a stopping criterion is checked. If it is not satisfied the
adjoint problem (10)– (14) is solved and the gradient grad(�n) is calculated from Equation (15).
Then the iteration step �n is determined and the new control parameters are calculated
according to Equation (16). The iterations are stopped at ���0, (�= (�/N)05 is the normalized
discrepancy, �0 is the data error) providing the implicit regularization based on the ‘dis-
crepancy’ principle [5,6].

Figure 3 demonstrates the estimation of all flow parameters f�(Yi) (�, U, V, T) (X/Y=1.2,
Nx=30, Ny=50) for exact input data (�=0, iterations are stopped at �=10−4) and smooth
inflow profiles. The values f�(Yi) (�, U, T) are normalized by their minimal value (V is divided
by Umin and shifted by unit ( f�=1+V/Umin)). The solution is smooth for exact data and
rippled for data with errors, �=0.01. The data error significantly increases the problem
instability. The solution is practically destroyed for �=0.05.

For less smooth inflow profiles, the oscillations occur even for exact input data. Figure 4
demonstrates the estimation of all flow parameters f�(Yi) (�, U, V, T) for exact input data.
The instability develops as the discrepancy diminishes. This result may be considered as an
illustration of this problem’s ill posedness. At ��10−3 the gradient methods stop converging
due to large oscillations in flow parameters.

The use of input data from additional sections slightly increases the stability due to mea-
surement error averaging, but the effect is not significant. Hence the Tikhonov regularization

Figure 3. Estimation of underexpanded jet parameters f�(Yi) from f exp(Yi): 1, exact inflow data; 2,
�=0; 3, �=0.01.
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Figure 4. The estimation of entrance boundary parameters f�(Yi) for errorless data at diminishing
discrepancy: 1, discrepancy=0.03; 2, discrepancy=0.003; 3, exact inflow data.

term of second-order �( fi+1−2fi+ fi−1)2 is added to the discrepancy �( f ) [18]. The corre-
sponding results are presented in Figure 5 (�=0.1) and demonstrate the more obvious
stabilization at �=0.05.

The instability is significantly lower if only a single flow parameter (temperature, for
example) is determined while all others are known. Results of T�(Yi) estimation using
‘measurements’ of T exp(Y) are presented in Figure 6 for data with errors �=0 and 0.01. The

Figure 5. The influence of second-order regularization on the quality of estimation of underexpanded
jet parameters f�(Yi) from f exp(Yi): 1, exact; 2, �=0.01, without regularization; 3, �=0.01, with

regularization.
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Figure 6. The estimation of T�(Yi) from T exp(Yi): 1, exact inflow data; 2, �=0.0; 3, �=0.01; 4, initial
guess.

spatially constant temperature is used as the initial guess. At exact input data, the discrepancy
diminishes below �=0.0001 without significant oscillations. At noisy data, the gradient
methods stop at the discrepancy close to the data error. Figure 7 represents results of
regularization for data error �=0.05.

Figure 7. Estimation of T�(Yi) from T exp(Yi) with regularization: 1, exact inflow data; 2, �=0.05; 3,
�=0.05+regularization.
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8. CONCLUSION

The estimation of inflow parameters from downstream measurements may be successfully
performed using gradient methods of optimization. The solution of the adjoint problem
provides the precise calculation of the discrepancy gradient, taking about twice as long as the
forward problem solution. The numerical tests demonstrate the successful estimation of inflow
parameters for both noiseless and noisy data.

The instabilities caused by this problem’s ill posedness may be successfully handled using the
‘discrepancy’ principle (stopping at discrepancy magnitude close to data error) for moderate
data errors. At large data errors, the additional Tikhonov regularizing terms of second-order
are efficient.

APPENDIX A. NOMENCLATURE

e specific energy, C�T
flow parameters (�, U, V, e)f
node number along transversal co-ordinatei
reference lengthL
Mach number (M=U�/(�RT�)0.5)M
pressureP
Prandtl number (Pr=	C�/
)Pr
gas constantR

Re Reynolds number (Re=��U�L/	)
co-ordinatesX, Y

Greek letters
regularization coefficient�

normalized discrepancy�

discrepancy of measured and calculated data�

specific heat ratio�

thermal conductivity


	 viscosity
input data error�

��, �U, �V, �e adjoint variables

Subscripts
� entrance boundary parameters (control variables)

points of measurementm

Superscripts
experimental (target) dataexp
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